Source code for genrl.agents.bandits.contextual.linpos

from typing import Optional

import numpy as np
import torch
from scipy.stats import invgamma

from genrl.agents.bandits.contextual.base import DCBAgent
from genrl.agents.bandits.contextual.common import TransitionDB
from genrl.utils.data_bandits.base import DataBasedBandit


[docs]class LinearPosteriorAgent(DCBAgent): """Deep contextual bandit agent using bayesian regression for posterior inference. Args: bandit (DataBasedBandit): The bandit to solve init_pulls (int, optional): Number of times to select each action initially. Defaults to 3. lambda_prior (float, optional): Guassian prior for linear model. Defaults to 0.25. a0 (float, optional): Inverse gamma prior for noise. Defaults to 6.0. b0 (float, optional): Inverse gamma prior for noise. Defaults to 6.0. device (str): Device to use for tensor operations. "cpu" for cpu or "cuda" for cuda. Defaults to "cpu". """ def __init__(self, bandit: DataBasedBandit, **kwargs): super(LinearPosteriorAgent, self).__init__(bandit, kwargs.get("device", "cpu")) self.init_pulls = kwargs.get("init_pulls", 3) self.lambda_prior = kwargs.get("lambda_prior", 0.25) self.a0 = kwargs.get("a0", 6.0) self.b0 = kwargs.get("b0", 6.0) self.mu = torch.zeros( size=(self.n_actions, self.context_dim + 1), device=self.device, dtype=torch.float, ) self.cov = torch.stack( [ (1.0 / self.lambda_prior) * torch.eye(self.context_dim + 1, device=self.device, dtype=torch.float) for _ in range(self.n_actions) ] ) self.inv_cov = torch.stack( [ self.lambda_prior * torch.eye(self.context_dim + 1, device=self.device, dtype=torch.float) for _ in range(self.n_actions) ] ) self.a = self.a0 * torch.ones( self.n_actions, device=self.device, dtype=torch.float ) self.b = self.b0 * torch.ones( self.n_actions, device=self.device, dtype=torch.float ) self.db = TransitionDB(self.device) self.t = 0 self.update_count = 0
[docs] def select_action(self, context: torch.Tensor) -> int: """Select an action based on given context. Selecting action with highest predicted reward computed through betas sampled from posterior. Args: context (torch.Tensor): The context vector to select action for. Returns: int: The action to take. """ self.t += 1 if self.t < self.n_actions * self.init_pulls: return torch.tensor( self.t % self.n_actions, device=self.device, dtype=torch.int ) var = torch.tensor( [self.b[i] * invgamma.rvs(self.a[i]) for i in range(self.n_actions)], device=self.device, dtype=torch.float, ) try: beta = ( torch.tensor( np.stack( [ np.random.multivariate_normal( self.mu[i], var[i] * self.cov[i] ) for i in range(self.n_actions) ] ) ) .to(self.device) .to(torch.float) ) except np.linalg.LinAlgError as e: # noqa F841 beta = ( ( torch.stack( [ torch.distributions.MultivariateNormal( torch.zeros(self.context_dim + 1), torch.eye(self.context_dim + 1), ).sample() for i in range(self.n_actions) ] ) ) .to(self.device) .to(torch.float) ) values = torch.mv(beta, torch.cat([context.view(-1), torch.ones(1)])) action = torch.argmax(values).to(torch.int) return action
[docs] def update_db(self, context: torch.Tensor, action: int, reward: int): """Updates transition database with given transition Args: context (torch.Tensor): Context recieved action (int): Action taken reward (int): Reward recieved """ self.db.add(context, action, reward)
[docs] def update_params( self, action: int, batch_size: int = 512, train_epochs: Optional[int] = None ): """Update parameters of the agent. Updated the posterior over beta though bayesian regression. Args: action (int): Action to update the parameters for. batch_size (int, optional): Size of batch to update parameters with. Defaults to 512 train_epochs (Optional[int], optional): Epochs to train neural network for. Not applicable in this agent. Defaults to None """ self.update_count += 1 x, y = self.db.get_data_for_action(action, batch_size) x = torch.cat([x, torch.ones(x.shape[0], 1)], dim=1) inv_cov = torch.mm(x.T, x) + self.lambda_prior * torch.eye(self.context_dim + 1) cov = torch.pinverse(inv_cov) mu = torch.mm(cov, torch.mm(x.T, y)) a = self.a0 + self.t / 2 b = self.b0 + (torch.mm(y.T, y) - torch.mm(mu.T, torch.mm(inv_cov, mu))) / 2 self.mu[action] = mu.squeeze(1) self.cov[action] = cov self.inv_cov[action] = inv_cov self.a[action] = a self.b[action] = b